Search results
Results from the WOW.Com Content Network
Solid rockets use propellant in the solid phase, liquid fuel rockets use propellant in the liquid phase, gas fuel rockets use propellant in the gas phase, and hybrid rockets use a combination of solid and liquid or gaseous propellants. In the case of solid rocket motors, the fuel and oxidizer are combined when the motor is cast.
A liquid-propellant rocket or liquid rocket uses a rocket engine burning liquid propellants. (Alternate approaches use gaseous or solid propellants.) Liquids are desirable propellants because they have reasonably high density and their combustion products have high specific impulse (I sp). This allows the volume of the propellant tanks to be ...
Konstantin Tsiolkovsky proposed the use of liquid propellants in 1903, in his article Exploration of Outer Space by Means of Rocket Devices. [3] [4] On March 16, 1926, Robert H. Goddard used liquid oxygen (LOX) and gasoline as propellants for his first partially successful liquid-propellant rocket launch. Both propellants are readily available ...
Hybrid-propellant rockets use a combination of solid and liquid propellant, typically involving a liquid oxidizer being pumped through a hollow cylinder of solid fuel. All current spacecraft use conventional chemical rockets (solid-fuel or liquid bipropellant) for launch, though some [note 3] have used air-breathing engines on their first stage ...
Most liquid-fueled chemical rockets use either hydrogen or hydrocarbon combustion, and the propellant is therefore mainly water (molecular mass 18) and carbon dioxide (molecular mass 44). Nuclear thermal rockets using gaseous hydrogen propellant (molecular mass 2) therefore have a theoretical maximum specific impulse that is 3 to 4.5 times ...
Europe's new Ariane 6 rocket ditched the helium of its predecessor Ariane 5 for a novel pressurization system that converts a small portion of its primary liquid oxygen and hydrogen propellants to ...
Hypergolically-fueled rocket engines are usually simple and reliable because they need no ignition system. Although larger hypergolic engines in some launch vehicles use turbopumps, most hypergolic engines are pressure-fed. A gas, usually helium, is fed to the propellant tanks under pressure through a series of check and safety valves.
These cryogenic temperatures vary depending on the propellant, with liquid oxygen existing below −183 °C (−297.4 °F; 90.1 K) and liquid hydrogen below −253 °C (−423.4 °F; 20.1 K). Since one or more of the propellants is in the liquid phase, all cryogenic rocket engines are by definition liquid-propellant rocket engines. [2]