Search results
Results from the WOW.Com Content Network
Bipropellant liquid rockets use a liquid fuel such as liquid hydrogen or RP-1, and a liquid oxidizer such as liquid oxygen. The engine may be a cryogenic rocket engine , where the fuel and oxidizer, such as hydrogen and oxygen, are gases which have been liquefied at very low temperatures.
Konstantin Tsiolkovsky proposed the use of liquid propellants in 1903, in his article Exploration of Outer Space by Means of Rocket Devices. [3] [4] On March 16, 1926, Robert H. Goddard used liquid oxygen (LOX) and gasoline as propellants for his first partially successful liquid-propellant rocket launch. Both propellants are readily available ...
Solar thermal rockets and nuclear thermal rockets typically propose to use liquid hydrogen for a specific impulse of around 600–900 seconds, or in some cases water that is exhausted as steam for a specific impulse of about 190 seconds. Nuclear thermal rockets use the heat of nuclear fission to add energy to the propellant. Some designs ...
Most liquid-fueled chemical rockets use either hydrogen or hydrocarbon combustion, and the propellant is therefore mainly water (molecular mass 18) and carbon dioxide (molecular mass 44). Nuclear thermal rockets using gaseous hydrogen propellant (molecular mass 2) therefore have a theoretical maximum specific impulse that is 3 to 4.5 times ...
Compressed fluid may also be used only as energy storage along with some other substance as the propellant, such as with a water rocket, where the energy stored in the compressed air is the fuel and the water is the propellant. Proposed photon rockets would use the relativistic momentum of photons to create thrust. Even though photons do not ...
Europe's new Ariane 6 rocket ditched the helium of its predecessor Ariane 5 for a novel pressurization system that converts a small portion of its primary liquid oxygen and hydrogen propellants to ...
These cryogenic temperatures vary depending on the propellant, with liquid oxygen existing below −183 °C (−297.4 °F; 90.1 K) and liquid hydrogen below −253 °C (−423.4 °F; 20.1 K). Since one or more of the propellants is in the liquid phase, all cryogenic rocket engines are by definition liquid-propellant rocket engines. [2]
Hybrid-propellant rockets use a combination of solid and liquid propellant, typically involving a liquid oxidizer being pumped through a hollow cylinder of solid fuel. All current spacecraft use conventional chemical rockets (solid-fuel or liquid bipropellant) for launch, though some [note 3] have used air-breathing engines on their first stage ...