Search results
Results from the WOW.Com Content Network
For example, the derivative of the sine function is written sin ′ (a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle. All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of the quotient rule applied to functions such as ...
The derivative of sine is cosine, and the derivative of cosine is negative sine: [16] = (), = (). Continuing the process in higher-order derivative results in the repeated same functions; the fourth derivative of a sine is the sine itself. [ 15 ]
Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin( t ) and cos( t ) are cos( t ) and –sin( t ) respectively, the derivatives of sinh( t ) and cosh( t ) are cosh( t ) and +sinh( t ) respectively.
A similar proof can be completed using power series as above to establish that the sine has as its derivative the cosine, and the cosine has as its derivative the negative sine. In fact, the definitions by ordinary differential equation and by power series lead to similar derivations of most identities.
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin θ < θ. So we have < <. For negative values of θ we have, by the symmetry of the sine function
The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen ...
The derivative of order zero of f is defined to be f itself and ... The polynomials, exponential function e x, and the trigonometric functions sine and cosine, ...