enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    where () = =, …, and () =, …, are constraints that are required to be satisfied (these are called hard constraints), and () is the objective function that needs to be optimized subject to the constraints. In some problems, often called constraint optimization problems, the objective function is actually the sum of cost functions, each of ...

  3. Chance constrained programming - Wikipedia

    en.wikipedia.org/wiki/Chance_constrained_programming

    A general chance constrained optimization problem can be formulated as follows: (,,) (,,) =, {(,,)}Here, is the objective function, represents the equality constraints, represents the inequality constraints, represents the state variables, represents the control variables, represents the uncertain parameters, and is the confidence level.

  4. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem. A maximization problem can be treated by negating the objective function.

  5. Mathematical programming with equilibrium constraints

    en.wikipedia.org/wiki/Mathematical_programming...

    Mathematical programming with equilibrium constraints (MPEC) is the study of constrained optimization problems where the constraints include variational inequalities or complementarities. MPEC is related to the Stackelberg game. MPEC is used in the study of engineering design, economic equilibrium, and multilevel games.

  6. Constraint satisfaction problem - Wikipedia

    en.wikipedia.org/.../Constraint_satisfaction_problem

    The classic model of Constraint Satisfaction Problem defines a model of static, inflexible constraints. This rigid model is a shortcoming that makes it difficult to represent problems easily. [ 33 ] Several modifications of the basic CSP definition have been proposed to adapt the model to a wide variety of problems.

  7. Design optimization - Wikipedia

    en.wikipedia.org/wiki/Design_optimization

    Design optimization applies the methods of mathematical optimization to design problem formulations and it is sometimes used interchangeably with the term engineering optimization. When the objective function f is a vector rather than a scalar , the problem becomes a multi-objective optimization one.

  8. Couenne - Wikipedia

    en.wikipedia.org/wiki/Couenne

    Both the objective function and the constraints might be nonlinear and nonconvex. For solving these problems, Couenne uses a reformulation procedure [2] and provides a linear programming approximation of any nonconvex optimization problem. [3] Couenne is an implementation of a branch-and-bound where every subproblem is solved by constructing a ...

  9. Lexicographic max-min optimization - Wikipedia

    en.wikipedia.org/wiki/Lexicographic_max-min...

    This problem can be solved iteratively using lexicographic optimization, but the number of constraints in each iteration t is C(n,t) -- the number of subsets of size t. This grows exponentially with n. It is possible to reduce the problem to a different problem, in which the number of constraints is polynomial in n.