Search results
Results from the WOW.Com Content Network
A pound-foot (lb⋅ft), abbreviated from pound-force foot (lbf · ft), is a unit of torque representing one pound of force acting at a perpendicular distance of one foot from a pivot point. [2] Conversely one foot pound-force (ft · lbf) is the moment about an axis that applies one pound-force at a radius of one foot.
Both energy and torque can be expressed as a product of a force vector with a displacement vector (hence pounds and feet); energy is the scalar product of the two, and torque is the vector product. Although calling the torque unit "pound-foot" has been academically suggested, both are still commonly called "foot-pound" in colloquial usage.
The pound-force is the product of one avoirdupois pound (exactly 0.45359237 kg) and the standard acceleration due to gravity, approximately 32.174049 ft/s 2 (9.80665 m/s 2). [ 5 ] [ 6 ] [ 7 ] The standard values of acceleration of the standard gravitational field ( g n ) and the international avoirdupois pound (lb) result in a pound-force equal ...
In the US, torque is most commonly referred to as the foot-pound (denoted as either lb-ft or ft-lb) and the inch-pound (denoted as in-lb). [ 17 ] [ 18 ] Practitioners depend on context and the hyphen in the abbreviation to know that these refer to torque and not to energy or moment of mass (as the symbolism ft-lb would properly imply).
One slug is a mass equal to 32.17405 lb (14.59390 kg) based on standard gravity, the international foot, and the avoirdupois pound. [3] In other words, at the Earth's surface (in standard gravity), an object with a mass of 1 slug weighs approximately 32.17405 lbf or 143.1173 N. [ 4 ] [ 5 ]
1 pound per square inch (psi) ≈ 6,895 Pa; Torque 1 pound-foot ≈ 1.356 N⋅m; Insulation 1 R-value (ft 2 ⋅°F⋅h/Btu) ≈ 0.1761 R SI (K⋅m 2 /W) Various combination units are in common use; these are straightforwardly defined based on the above basic units. Sizing systems are used for various items in commerce, several of which are U.S ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).