Search results
Results from the WOW.Com Content Network
Proton nuclear magnetic resonance (proton NMR, hydrogen-1 NMR, or 1 H NMR) is the application of nuclear magnetic resonance in NMR spectroscopy with respect to hydrogen-1 nuclei within the molecules of a substance, in order to determine the structure of its molecules. [1]
In meta-substitution, the substituents occupy positions 1 and 3 (corresponding to R and meta in the diagram). In para-substitution, the substituents occupy the opposite ends (positions 1 and 4, corresponding to R and para in the diagram). The toluidines serve as an example for these three types of substitution.
The 1 H NMR spectra were recorded at a resonance frequency of 400 MHz with a resolution of 0.0625 Hz or at 90 MHz with a resolution of 0.125 Hz. The spectral acquisition was carried out using a flip angle of 22.5 – 30.0 degrees and a pulse repetition time of 30 seconds. [ 4 ]
An aromatic ring current is an effect observed in aromatic molecules such as benzene and naphthalene. If a magnetic field is directed perpendicular to the plane of the aromatic system, a ring current is induced in the delocalized π electrons of the aromatic ring. [ 1 ]
Phenyl groups are found in many organic compounds, both natural and synthetic (see figure). Most common among natural products is the amino acid phenylalanine, which contains a phenyl group. A major product of the petrochemical industry is "BTX" consisting of benzene, toluene, and xylene - all of which are building blocks for phenyl compounds.
Homoaromaticity, in organic chemistry, refers to a special case of aromaticity in which conjugation is interrupted by a single sp 3 hybridized carbon atom. Although this sp 3 center disrupts the continuous overlap of p-orbitals, traditionally thought to be a requirement for aromaticity, considerable thermodynamic stability and many of the spectroscopic, magnetic, and chemical properties ...
It was introduced in 1972 by the Austrian organic chemist Erich Clar in his book The Aromatic Sextet. The rule states that given a polycyclic aromatic hydrocarbon, the resonance structure most important to characterize its properties is that with the largest number of aromatic π-sextets i.e. benzene-like moieties. [1]
n-Butylbenzene is the organic compound with the formula C 6 H 5 C 4 H 9. Of two isomers of butylbenzene, n -butylbenzene consists of a phenyl group attached to the 1 position of a butyl group. It is a slightly greasy, colorless liquid.