Search results
Results from the WOW.Com Content Network
Transformation is one of three processes that lead to horizontal gene transfer, in which exogenous genetic material passes from one bacterium to another, the other two being conjugation (transfer of genetic material between two bacterial cells in direct contact) and transduction (injection of foreign DNA by a bacteriophage virus into the host ...
The final result of conjugation, transduction, and/or transformation is the production of genetic recombinants, individuals that carry not only the genes they inherited from their parent cells but also the genes introduced to their genomes by conjugation, transduction, and/or transformation. [5] [6] [7]
Bacterial conjugation is the transfer of genetic material between bacterial cells by direct cell-to-cell contact or by a bridge-like connection between two cells. [1] This takes place through a pilus. [2] [full citation needed] It is a parasexual mode of reproduction in bacteria. Escherichia coli conjugating using F-pili. These long and robust ...
Gene transfer systems that have been extensively studied in bacteria include genetic transformation, conjugation and transduction. Natural transformation is a bacterial adaptation for DNA transfer between two cells through the intervening medium. The uptake of donor DNA and its recombinational incorporation into the recipient chromosome depends ...
Conjugation in Mycobacterium smegmatis, like conjugation in E. coli, requires stable and extended contact between a donor and a recipient strain, is DNase resistant, and the transferred DNA is incorporated into the recipient chromosome by homologous recombination.
In bacteria, transformation is a process of gene transfer that ordinarily occurs between individual cells of the same bacterial species. Transformation involves integration of donor DNA into the recipient chromosome by recombination. This process appears to be an adaptation for repairing DNA damages in the recipient chromosome by HRR. [13]
Transduction This is an illustration of the difference between generalized transduction, which is the process of transferring any bacterial gene to a second bacterium through a bacteriophage and specialized transduction, which is the process of moving restricted bacterial genes to a recipient bacterium. While generalized transduction can occur ...
Proposed conjugation mechanisms between donor and recipient cells in archaea (left) and bacteria (right). The schematic shows how ssDNA substrates are generated by the HerA-NurA machinery in the donor archaeal cells and by the plasmid-encoded relaxosome in bacteria.