enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds.It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra.

  3. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    The differential-geometric properties of a parametric curve (such as its length, its Frenet frame, and its generalized curvature) are invariant under reparametrization and therefore properties of the equivalence class itself. The equivalence classes are called C r-curves and are central objects studied in the differential geometry of curves.

  4. G-structure on a manifold - Wikipedia

    en.wikipedia.org/wiki/G-structure_on_a_manifold

    In differential geometry, a G-structure on an n-manifold M, for a given structure group [1] G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M.. The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields.

  5. Mathematics Subject Classification - Wikipedia

    en.wikipedia.org/wiki/Mathematics_Subject...

    For example, for differential geometry, the top-level code is 53, and the second-level codes are: A for classical differential geometry; B for local differential geometry; C for global differential geometry; D for symplectic geometry and contact geometry; In addition, the special second-level code "-" is used for specific kinds of materials.

  6. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    A major theorem, often called the fundamental theorem of the differential geometry of surfaces, asserts that whenever two objects satisfy the Gauss-Codazzi constraints, they will arise as the first and second fundamental forms of a regular surface. Using the first fundamental form, it is possible to define new objects on a regular surface.

  7. List of differential geometry topics - Wikipedia

    en.wikipedia.org/wiki/List_of_differential...

    Chern class; Pontrjagin class; spin structure; differentiable map. submersion; immersion; Embedding. Whitney embedding theorem; Critical value. Sard's theorem; Saddle point; Morse theory; Lie derivative; Hairy ball theorem; Poincaré–Hopf theorem; Stokes' theorem; De Rham cohomology; Sphere eversion; Frobenius theorem (differential topology ...

  8. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the surface at that point. Namely, given a surface X in Euclidean space R 3 , the Gauss map is a map N : X → S 2 (where S 2 is the unit sphere ) such that for each p in X , the function value N ( p ) is ...

  9. Mean curvature flow - Wikipedia

    en.wikipedia.org/wiki/Mean_curvature_flow

    In the field of differential geometry in mathematics, mean curvature flow is an example of a geometric flow of hypersurfaces in a Riemannian manifold (for example, smooth surfaces in 3-dimensional Euclidean space).