Search results
Results from the WOW.Com Content Network
The sound wave is heard as the familiar "thud" or "thump" of a sonic boom, commonly created by the supersonic flight of aircraft. The shock wave is one of several different ways in which a gas in a supersonic flow can be compressed. Some other methods are isentropic compressions, including Prandtl–Meyer compressions. The method of compression ...
A blast wave travels faster than the speed of sound, and the passage of the shock wave usually lasts only a few milliseconds. Like other types of explosions, a blast wave can also cause damage to things and people by the blast wind, debris, and fires. The original explosion will send out fragments that travel very fast.
[28] [29] For example, an 8 gram projectile at 360 m/s impacting a NIJ level II vest over the sternum can produce an estimated pressure wave level of nearly 2.0 MPa (280 psi) in the heart and a pressure wave level of nearly 1.5 MPa (210 psi) in the lungs. Impacting over the liver can produce an estimated pressure wave level of 2.0 MPa (280 psi ...
An underground explosion concentrates this pressure wave, and a localized earthquake event is more probable. The first and fastest wave, equivalent to a normal earthquake's P wave, can inform the location of the test; [23] the S wave and the Rayleigh wave follow. These can all be measured in most circumstances by seismic stations across the ...
The velocity of the blast wave in air may be extremely high, depending on the type and amount of the explosive used. An individual in the path of an explosion will be subjected not only to excess barometric pressure, but to pressure from the high-velocity wind traveling directly behind the shock front of the blast wave.
Overpressure (or blast overpressure) is the pressure caused by a shock wave over and above normal atmospheric pressure. The shock wave may be caused by sonic boom or by explosion, and the resulting overpressure receives particular attention when measuring the effects of nuclear weapons or thermobaric bombs.
The velocity of detonation is an important indicator for overall energy and power of detonation, and in particular for the brisance or shattering effect of an explosive which is due to the detonation pressure. The pressure can be calculated using Chapman-Jouguet theory from the velocity and density.
Shock is formed due to coalescence of various small pressure pulses. Sound waves are pressure waves and it is at the speed of the sound wave the disturbances are communicated in the medium. When an object is moving in a flow field the object sends out disturbances which propagate at the speed of sound and adjusts the remaining flow field ...