Search results
Results from the WOW.Com Content Network
A bump function is a smooth function with compact support.. In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (differentiability class) it has over its domain.
The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice—once for differential equations and once again for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale (also known as a time-set ...
Defining the differential as a kind of differential form, specifically the exterior derivative of a function. The infinitesimal increments are then identified with vectors in the tangent space at a point. This approach is popular in differential geometry and related fields, because it readily generalizes to mappings between differentiable ...
For a n-times differentiable function, by Taylor's theorem the Taylor series expansion is given as (+) = + ′ ()! + ()! + + ()! + (),. Where n! denotes the factorial of n, and R n (x) is a remainder term, denoting the difference between the Taylor polynomial of degree n and the original function.
The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.
The discrete equivalent of differentiation is finite differences. The study of differential calculus is unified with the calculus of finite differences in time scale calculus. [54] The arithmetic derivative involves the function that is defined for the integers by the prime factorization. This is an analogy with the product rule. [55]
If the input of the function represents time, then the difference quotient represents change with respect to time. For example, if f {\displaystyle f} is a function that takes a time as input and gives the position of a ball at that time as output, then the difference quotient of f {\displaystyle f} is how the position is changing in time, that ...
For differentiable functions, the symmetric difference quotient does provide a better numerical approximation of the derivative than the usual difference quotient. [ 3 ] The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point, if the latter two both exist.