enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The discrete equivalent of differentiation is finite differences. The study of differential calculus is unified with the calculus of finite differences in time scale calculus. [54] The arithmetic derivative involves the function that is defined for the integers by the prime factorization. This is an analogy with the product rule. [55]

  3. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    Therefore, the true derivative of f at x is the limit of the value of the difference quotient as the secant lines get closer and closer to being a tangent line: ′ = (+) (). Since immediately substituting 0 for h results in 0 0 {\displaystyle {\frac {0}{0}}} indeterminate form , calculating the derivative directly can be unintuitive.

  4. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    Defining the differential as a kind of differential form, specifically the exterior derivative of a function. The infinitesimal increments are then identified with vectors in the tangent space at a point. This approach is popular in differential geometry and related fields, because it readily generalizes to mappings between differentiable ...

  5. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The orange line is tangent to =, meaning at that exact point, the slope of the curve and the straight line are the same. The derivative at different points of a differentiable function. The derivative of () at the point = is the slope of the tangent to (, ()). [3]

  6. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    A bump function is a smooth function with compact support.. In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (differentiability class) it has over its domain.

  7. Directional derivative - Wikipedia

    en.wikipedia.org/wiki/Directional_derivative

    In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...

  8. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp. If x 0 is an interior point in the domain of a function f, then f is said to be differentiable at x 0 if the derivative ′ exists.

  9. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    In R 3, the gradient, curl, and divergence are special cases of the exterior derivative. An intuitive interpretation of the gradient is that it points "up": in other words, it points in the direction of fastest increase of the function. It can be used to calculate directional derivatives of scalar functions or normal directions. Divergence ...