enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum cut - Wikipedia

    en.wikipedia.org/wiki/Maximum_cut

    In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem. The problem can be stated simply as follows.

  3. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    Max Cut is a problem in graph theory, which is NP-hard. Given a graph, the problem is to divide the vertices in two sets, so that as many edges as possible go from one set to the other. Max Cut can be formulated as a QCQP, and SDP relaxation of the dual provides good lower bounds.

  4. Logic of graphs - Wikipedia

    en.wikipedia.org/wiki/Logic_of_graphs

    Fixed point logics, and extensions of these logics that also allow integer counting variables whose values range from 0 to the number of vertices, have been used in descriptive complexity in an attempt to provide a logical description of decision problems in graph theory that can be decided in polynomial time. The fixed point of a logical ...

  5. Hadwiger–Nelson problem - Wikipedia

    en.wikipedia.org/wiki/Hadwiger–Nelson_problem

    A seven-coloring of the plane, and a four-chromatic unit distance graph in the plane (the Moser spindle), proving that the chromatic number of a plane is bounded above by 7 and below by 4 The Golomb graph, Solomon W. Golomb's ten-vertex four-chromatic unit distance graph. In geometric graph theory, the Hadwiger–Nelson problem, named after ...

  6. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    Often, the problem is to decompose a graph into subgraphs isomorphic to a fixed graph; for instance, decomposing a complete graph into Hamiltonian cycles. Other problems specify a family of graphs into which a given graph should be decomposed, for instance, a family of cycles, or decomposing a complete graph K n into n − 1 specified trees ...

  7. Closure problem - Wikipedia

    en.wikipedia.org/wiki/Closure_problem

    In graph theory and combinatorial optimization, a closure of a directed graph is a set of vertices C, such that no edges leave C. The closure problem is the task of finding the maximum-weight or minimum-weight closure in a vertex-weighted directed graph. [1] [2] It may be solved in polynomial time using a reduction to the maximum flow problem.

  8. 3-dimensional matching - Wikipedia

    en.wikipedia.org/wiki/3-dimensional_matching

    3-dimensional matchings. (a) Input T. (b)–(c) Solutions. In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching (also known as 2-dimensional matching) to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices (instead of edges containing 2 vertices in a usual graph).

  9. Turán's brick factory problem - Wikipedia

    en.wikipedia.org/wiki/Turán's_brick_factory_problem

    Mathematically, this problem can be formalized as asking for a graph drawing of a complete bipartite graph, whose vertices represent kilns and storage sites, and whose edges represent the tracks from each kiln to each storage site. The graph should be drawn in the plane with each vertex as a point, each edge as a curve connecting its two ...