Search results
Results from the WOW.Com Content Network
The mast is a cylindrical metal shaft that extends upward from—and is driven by—the transmission. At the top of the mast is the attachment point (colloquially called a Jesus nut) for the rotor blades called the hub. The rotor blades are then attached to the hub, and the hub can have 10-20 times the drag of the blade. [1]
Bell P-39K-L internal layout from Pilot's Flight Operating Instructions P-39K-1 and P-39L-1 (T.O. No. 01-110FG-1) The P-39 was an all-metal, low-wing, single-engine fighter, with a tricycle undercarriage and an Allison V-1710 liquid-cooled V-12 engine mounted in the central fuselage, directly behind the cockpit.
A simple displacement diagram illustrates the follower motion at a constant velocity rise followed by a similar return with a dwell in between as depicted in figure 2. [4] The rise is the motion of the follower away from the cam center, dwell is the motion where the follower is at rest, and return is the motion of the follower toward the cam ...
The Bell X-1 (Bell Model 44) is a rocket engine–powered aircraft, designated originally as the XS-1, and was a joint National Advisory Committee for Aeronautics–U.S. Army Air Forces–U.S. Air Force supersonic research project built by Bell Aircraft. Conceived during 1944 and designed and built in 1945, it achieved a speed of nearly 1,000 ...
Johnston helped design and later flew the rocket-propelled Bell X-1 at a speed of Mach.72 on May 22, 1947. [5] He stayed on the program as a design advisor on modifications to the trim controls that he discovered were unusable in their manufactured configuration at high subsonic speeds.
The linkage between the propeller and the gun now consisted of a flexible drive shaft directly connecting the end of the engine camshaft to the trigger motor of the gun. [40] The firing button for the gun simply engaged a clutch at the engine which set the flexible drive (and thus the trigger motor) in motion.
A 6-bladed Hamilton Standard 568F propeller on an ATR 72 short-haul airliner. Lowry [27] quotes a propeller efficiency of about 73.5% at cruise for a Cessna 172.This is derived from his "Bootstrap approach" for analyzing the performance of light general aviation aircraft using fixed pitch or constant speed propellers.
The following stresses are induced in the shafts. Shear stresses due to the transmission of torque (due to torsional load). Bending stresses (tensile or compressive) due to the forces acting upon the machine elements like gears and pulleys as well as the self weight of the shaft. Stresses due to combined torsional and bending loads.