Search results
Results from the WOW.Com Content Network
Normally, excess pyruvate is shunted into gluconeogenesis via conversion of pyruvate into oxaloacetate, but because of the enzyme deficiency, excess pyruvate is converted into lactate instead. As a key role of gluconeogenesis is in the maintenance of blood sugar, deficiency of pyruvate carboxylase can also lead to hypoglycemia.
Pyruvate generated from alanine will enter glyceroneogenesis and generate glycerol 3-phosphate. Glutamate can also enter glyceroneogenesis. Since the key reaction of glyceroneogenesis is the decarboxylation and phosphorylation of oxaloacetate to phosphoenolpyruvate, in theory any biochemical pathway which generates oxaloacetate is related to ...
Gluconeogenesis begins in the mitochondria with the formation of oxaloacetate by the carboxylation of pyruvate. This reaction also requires one molecule of ATP, and is catalyzed by pyruvate carboxylase. This enzyme is stimulated by high levels of acetyl-CoA (produced in β-oxidation in the liver) and inhibited by high levels of ADP and glucose.
Firstly the oxaloacetate is reduced to malate using NADH. Then the malate is decarboxylated to pyruvate. Now this pyruvate can easily enter the mitochondria, where it is carboxylated again to oxaloacetate by pyruvate carboxylase. In this way, the transfer of acetyl-CoA that is from the mitochondria into the cytoplasm produces a molecule of NADH.
Pyruvate, the conjugate base, CH 3 COCOO −, is an intermediate in several metabolic pathways throughout the cell. Pyruvic acid can be made from glucose through glycolysis , converted back to carbohydrates (such as glucose) via gluconeogenesis , or converted to fatty acids through a reaction with acetyl-CoA . [ 3 ]
glutamate oxaloacetate transaminase (GOT), also called aspartate transaminase ... The conversion of malate to pyruvate and lactate is catalyzed by NAD(P) dependent ...
Oxaloacetate decarboxylase is a carboxy-lyase involved in the conversion of oxaloacetate into pyruvate.. It is categorized under EC 4.1.1.3.. Oxaloacetate decarboxylase activity in a given organism may be due to activity of malic enzyme, pyruvate kinase, malate dehydrogenase, pyruvate carboxylase and PEP carboxykinase or the activity of "real" oxaloacetate decarboxylases.
This reaction requires inorganic phosphate and ATP plus pyruvate, producing PEP, AMP, and inorganic pyrophosphate (PP i). The next step is the carboxylation of PEP by the PEP carboxylase enzyme (PEPC) producing oxaloacetate. Both of these steps occur in the mesophyll cells: pyruvate + P i + ATP → PEP + AMP + PP i PEP + CO 2 → oxaloacetate