enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exergy - Wikipedia

    en.wikipedia.org/wiki/Exergy

    This rate equation for the exergy within an open system X (Ξ or B) takes into account the exergy transfer rates across the system boundary by heat transfer (q for conduction & convection, and M by radiative fluxes), by mechanical or electrical work transfer (W), and by mass transfer (m), as well as taking into account the exergy destruction (I ...

  3. Exergy efficiency - Wikipedia

    en.wikipedia.org/wiki/Exergy_efficiency

    The destruction of exergy is closely related to the creation of entropy and as such any system containing highly irreversible processes will have a low energy efficiency. As an example the combustion process inside a power stations gas turbine is highly irreversible and approximately 25% of the exergy input will be destroyed here.

  4. Carnot method - Wikipedia

    en.wikipedia.org/wiki/Carnot_method

    Exergy does not only consider energy but also energy quality. It can be considered a product of both. Therefore any energy transformation should also be assessed according to its exergetic efficiency or loss ratios. The quality of the product "thermal energy" is fundamentally determined by the mean temperature level at which this heat is delivered.

  5. Gouy–Stodola theorem - Wikipedia

    en.wikipedia.org/wiki/Gouy–Stodola_theorem

    The exergy of the system is the maximal amount of useful work that the system can generate, during a process which brings it to equilibrium with its environment, or the amount of energy available. During an irreversible process , such as heat exchanges with reservoirs, exergy is destroyed.

  6. Energy conversion efficiency - Wikipedia

    en.wikipedia.org/wiki/Energy_conversion_efficiency

    Energy conversion efficiency depends on the usefulness of the output. All or part of the heat produced from burning a fuel may become rejected waste heat if, for example, work is the desired output from a thermodynamic cycle. Energy converter is an example of an energy transformation.

  7. Energy return on investment - Wikipedia

    en.wikipedia.org/wiki/Energy_return_on_investment

    The issue is still subject of numerous studies, and prompting academic argument. That's mainly because the "energy invested" critically depends on technology, methodology, and system boundary assumptions, resulting in a range from a maximum of 2000 kWh/m 2 of module area down to a minimum of 300 kWh/m 2 with a median value of 585 kWh/m 2 according to a meta-study from 2013.

  8. 7 Tips for Having More Energy - AOL

    www.aol.com/7-tips-having-more-energy-155500049.html

    How to Have More Energy: 7 Tips. This article was reviewed by Craig Primack, MD, FACP, FAAP, FOMA. Life can get incredibly busy, and keeping up often hinges on having enough energy.

  9. Internal energy - Wikipedia

    en.wikipedia.org/wiki/Internal_energy

    The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization.