Search results
Results from the WOW.Com Content Network
The canonical heap overflow technique overwrites dynamic memory allocation linkage (such as malloc metadata) and uses the resulting pointer exchange to overwrite a program function pointer. For example, on older versions of Linux , two buffers allocated next to each other on the heap could result in the first buffer overwriting the second ...
The canonical heap overflow technique overwrites dynamic memory allocation linkage (such as malloc meta data) and uses the resulting pointer exchange to overwrite a program function pointer. Microsoft's GDI+ vulnerability in handling JPEGs is an example of the danger a heap overflow can present. [5]
Stack buffer overflow is a type of the more general programming malfunction known as buffer overflow (or buffer overrun). [1] Overfilling a buffer on the stack is more likely to derail program execution than overfilling a buffer on the heap because the stack contains the return addresses for all active function calls.
Buffer overflow – out-of-bound writes can corrupt the content of adjacent objects, or internal data (like bookkeeping information for the heap) or return addresses. Buffer over-read – out-of-bound reads can reveal sensitive data or help attackers bypass address space layout randomization .
Stack buffer overflow is a type of the more general programming malfunction known as buffer overflow (or buffer overrun). Overfilling a buffer on the stack is more likely to derail program execution than overfilling a buffer on the heap because the stack contains the return addresses for all active function calls. [1]
Most structured and object-oriented languages provide an area of memory, called the heap or free store, from which objects are dynamically allocated. The example C code below illustrates how structure objects are dynamically allocated and referenced. The standard C library provides the function malloc() for allocating memory blocks from the ...
A heap spray can be used to introduce a large amount of order to compensate for this and increase the chances of successful exploitation. Heap sprays take advantage of the fact that on most architectures and operating systems, the start location of large heap allocations is predictable and consecutive allocations are roughly sequential.
In computer security, a NOP slide, NOP sled or NOP ramp is a sequence of NOP (no-operation) instructions meant to "slide" the CPU's instruction execution flow to its final, desired destination whenever the program branches to a memory address anywhere on the slide.