Search results
Results from the WOW.Com Content Network
Graphics Double Data Rate 5 Synchronous Dynamic Random-Access Memory (GDDR5 SDRAM) is a type of synchronous graphics random-access memory (SGRAM) with a high bandwidth ("double data rate") interface designed for use in graphics cards, game consoles, and high-performance computing. [1] It is a type of GDDR SDRAM (graphics DDR SDRAM).
Memory latency is the time (the latency) between initiating a request for a byte or word in memory until it is retrieved by a processor. If the data are not in the processor's cache , it takes longer to obtain them, as the processor will have to communicate with the external memory cells.
Graphics Double Data Rate 7 Synchronous Dynamic Random-Access Memory (GDDR7 SDRAM) is a type of synchronous graphics random-access memory (SGRAM) specified by the JEDEC Semiconductor Memory Standard, with a high bandwidth, "double data rate" interface, designed for use in graphics cards, game consoles, and high-performance computing.
High Bandwidth Memory (HBM) is a computer memory interface for 3D-stacked synchronous dynamic random-access memory (SDRAM) initially from Samsung, AMD and SK Hynix.It is used in conjunction with high-performance graphics accelerators, network devices, high-performance datacenter AI ASICs, as on-package cache in CPUs [1] and on-package RAM in upcoming CPUs, and FPGAs and in some supercomputers ...
Increasing memory bandwidth, even while increasing memory latency, may improve the performance of a computer system with multiple processors and/or multiple execution threads. Higher bandwidth will also boost performance of integrated graphics processors that have no dedicated video memory but use regular RAM as VRAM .
GDDR3 SDRAM (Graphics Double Data Rate 3 SDRAM) is a type of DDR SDRAM specialized for graphics processing units (GPUs) offering less access latency and greater device bandwidths. [ compared to? ] Its specification was developed by ATI Technologies in collaboration with DRAM vendors including Elpida Memory , Hynix Semiconductor , Infineon ...
Because the GPU has access to every draw operation, it can analyze data in these forms quickly, whereas a CPU must poll every pixel or data element much more slowly, as the speed of access between a CPU and its larger pool of random-access memory (or in an even worse case, a hard drive) is slower than GPUs and video cards, which typically ...
It is beneficial for the GPU's compute units to have fast access to a physically close cache rather than searching for data in video memory. AMD claims that RDNA 2's 128 MB of on-die Infinity Cache "dramatically reduces latency and power consumption". [16]