Search results
Results from the WOW.Com Content Network
The Canberra distance is a numerical measure of the distance between pairs of points in a vector space, introduced in 1966 [1] and refined in 1967 [2] by Godfrey N. Lance and William T. Williams. It is a weighted version of L ₁ (Manhattan) distance . [ 3 ]
Using code-word lengths obtained from the page-hit counts returned by Google from the web, we obtain a semantic distance using the NCD formula and viewing Google as a compressor useful for data mining, text comprehension, classification, and translation. The associated NCD, called the normalized Google distance (NGD) can be rewritten as
The inter-cluster distance d(i,j) between two clusters may be any number of distance measures, such as the distance between the centroids of the clusters. Similarly, the intra-cluster distance d '(k) may be measured in a variety of ways, such as the maximal distance between any pair of elements in cluster k. Since internal criterion seek ...
In statistics, Gower's distance between two mixed-type objects is a similarity measure that can handle different types of data within the same dataset and is particularly useful in cluster analysis or other multivariate statistical techniques. Data can be binary, ordinal, or continuous variables.
Manhattan distance, also known as Taxicab geometry, is a commonly used similarity measure in clustering techniques that work with continuous data. It is a measure of the distance between two data points in a high-dimensional space, calculated as the sum of the absolute differences between the corresponding coordinates of the two points | | + | |.
The algorithm is often presented as assigning objects to the nearest cluster by distance. Using a different distance function other than (squared) Euclidean distance may prevent the algorithm from converging. Various modifications of k-means such as spherical k-means and k-medoids have been proposed to allow using other distance measures ...
The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...
In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.