enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intrapleural pressure - Wikipedia

    en.wikipedia.org/wiki/Intrapleural_pressure

    At rest, there is a negative intrapleural pressure. This provides a transpulmonary pressure, causing the lungs to expand. If humans didn't maintain a slightly negative pressure even when exhaling, their lungs would collapse on themselves because all the air would rush towards the area of lower pressure. Intra-pleural pressure is sub-atmospheric.

  3. Lung compliance - Wikipedia

    en.wikipedia.org/wiki/Lung_compliance

    Pulmonary compliance is calculated using the following equation, where ΔV is the change in volume, and ΔP is the change in pleural pressure: = For example, if a patient inhales 500 mL of air from a spirometer with an intrapleural pressure before inspiration of −5 cm H 2 O and −10 cm H 2 O at the end of inspiration.

  4. Elastic recoil - Wikipedia

    en.wikipedia.org/wiki/Elastic_recoil

    With inhalation, the intrapleural pressure (the pressure within the pleural cavity) of the lungs decreases. Relaxing the diaphragm during expiration allows the lungs to recoil and regain the intrapleural pressure experienced previously at rest. Elastic recoil is inversely related to lung compliance.

  5. Compliance (physiology) - Wikipedia

    en.wikipedia.org/wiki/Compliance_(physiology)

    Arterial compliance is an important cardiovascular risk factor. Compliance diminishes with age and menopause. Arterial compliance is measured by ultrasound as a pressure (carotid artery) and volume (outflow into aorta) relationship. [5] Compliance, in simple terms, is the degree to which a container experiences pressure or force without disruption.

  6. Respiratory system - Wikipedia

    en.wikipedia.org/wiki/Respiratory_system

    Doing the same at 5500 m, where the atmospheric pressure is only 50 kPa, the intrapulmonary air pressure falls to 25 kPa. Therefore, the same change in lung volume at sea level results in a 50 kPa difference in pressure between the ambient air and the intrapulmonary air, whereas it result in a difference of only 25 kPa at 5500 m.

  7. Pneumothorax - Wikipedia

    en.wikipedia.org/wiki/Pneumothorax

    Once air enters the pleural cavity, the intrapleural pressure increases, resulting in the difference between the intrapulmonary pressure and the intrapleural pressure (defined as the transpulmonary pressure) to equal zero, which cause the lungs to deflate in contrast to a normal transpulmonary pressure of ~4 mm Hg. [28]

  8. Transpulmonary pressure - Wikipedia

    en.wikipedia.org/wiki/Transpulmonary_pressure

    The alveolar pressure is estimated by measuring the pressure in the airways while holding one's breath. [2] The intrapleural pressure is estimated by measuring the pressure inside a balloon placed in the esophagus. [2] Measurement of transpulmonary pressure assists in spirometry in availing for calculation of static lung compliance.

  9. Pulmonary gas pressures - Wikipedia

    en.wikipedia.org/wiki/Pulmonary_gas_pressures

    Firstly, as the air enters the lungs, it is humidified by the upper airway and thus the partial pressure of water vapour (47 mmHg) reduces the oxygen partial pressure to about 150 mmHg. The rest of the difference is due to the continual uptake of oxygen by the pulmonary capillaries , and the continual diffusion of CO 2 out of the capillaries ...