Search results
Results from the WOW.Com Content Network
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).
The Jenks optimization method, also called the Jenks natural breaks classification method, is a data clustering method designed to determine the best arrangement of values into different classes. This is done by seeking to minimize each class's average deviation from the class mean, while maximizing each class's deviation from the means of the ...
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]
A pivot table is a table of values which are aggregations of groups of individual values from a more extensive table (such as from a database, spreadsheet, or business intelligence program) within one or more discrete categories. The aggregations or summaries of the groups of the individual terms might include sums, averages, counts, or other ...
Biclustering, block clustering, [1] [2] Co-clustering or two-mode clustering [3] [4] [5] is a data mining technique which allows simultaneous clustering of the rows and columns of a matrix. The term was first introduced by Boris Mirkin [ 6 ] to name a technique introduced many years earlier, [ 6 ] in 1972, by John A. Hartigan .
The minimum disagreement correlation clustering problem is the following optimization problem: + + (). Here, the set + contains the attractive edges whose endpoints are in different components with respect to the clustering and the set () contains the repulsive edges whose endpoints are in the same component with respect to the clustering .
In complete-linkage clustering, the link between two clusters contains all element pairs, and the distance between clusters equals the distance between those two elements (one in each cluster) that are farthest away from each other. The shortest of these links that remains at any step causes the fusion of the two clusters whose elements are ...
Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]