Ads
related to: quartic equation solution worksheeteducation.com has been visited by 100K+ users in the past month
- 20,000+ Worksheets
Browse by grade or topic to find
the perfect printable worksheet.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- 20,000+ Worksheets
Search results
Results from the WOW.Com Content Network
So, if the three non-monic coefficients of the depressed quartic equation, + + + =, in terms of the five coefficients of the general quartic equation are given as follows: =, = + and = +, then the criteria to identify a priori each case of quartic equations with multiple roots and their respective solutions are exposed below.
Each coordinate of the intersection points of two conic sections is a solution of a quartic equation. The same is true for the intersection of a line and a torus.It follows that quartic equations often arise in computational geometry and all related fields such as computer graphics, computer-aided design, computer-aided manufacturing and optics.
An algebraic solution to the problem was finally found first in 1965 by Jack M. Elkin (an actuary), by means of a quartic polynomial. [8] Other solutions were rediscovered later: in 1989, by Harald Riede; [9] in 1990 (submitted in 1988), by Miller and Vegh; [10] and in 1992, by John D. Smith [3] and also by Jörg Waldvogel. [11]
A quartic equation has four solutions, and only one solution for this equation matches the problem as presented. Another solution is for a case where one ladder (and wall) is below ground level and the other above ground level. In this case the ladders do not actually cross, but their extensions do so at the specified height.
In mathematics, especially in algebraic geometry, a quartic surface is a surface defined by an equation of degree 4. More specifically there are two closely related types of quartic surface: affine and projective. An affine quartic surface is the solution set of an equation of the form (,,) =
Quartic reciprocity, a theorem from number theory; Quartic surface, a surface defined by an equation of degree 4; See also. All pages with titles beginning with Quartic ; All pages with titles containing Quartic; Quart (disambiguation) Quintic, relating to degree 5, as next higher above quartic; Cubic (disambiguation), relating to degree 3 or a ...
The cruciform curve, or cross curve is a quartic plane curve given by the equation = where a and b are two parameters determining the shape of the curve. The cruciform curve is related by a standard quadratic transformation, x ↦ 1/x, y ↦ 1/y to the ellipse a 2 x 2 + b 2 y 2 = 1, and is therefore a rational plane algebraic curve of genus zero.
Quartic or biquadratic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x 4 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of some of these theorems, in that they relate the solvability of the congruence x 4 ≡ p (mod q) to that of x 4 ≡ q (mod p).
Ads
related to: quartic equation solution worksheeteducation.com has been visited by 100K+ users in the past month