Search results
Results from the WOW.Com Content Network
Algorithmic inference gathers new developments in the statistical inference methods made feasible by the powerful computing devices widely available to any data analyst. Cornerstones in this field are computational learning theory , granular computing , bioinformatics , and, long ago, structural probability ( Fraser 1966 ).
Grammar induction (or grammatical inference) [1] is the process in machine learning of learning a formal grammar (usually as a collection of re-write rules or productions or alternatively as a finite state machine or automaton of some kind) from a set of observations, thus constructing a model which accounts for the characteristics of the observed objects.
Characteristic samples is a concept in the field of grammatical inference, related to passive learning.In passive learning, an inference algorithm is given a set of pairs of strings and labels , and returns a representation that is consistent with .
John Pollock's OSCAR system [2] is an example of an automated argumentation system that is more specific than being just an automated theorem prover. Tools and techniques of automated reasoning include the classical logics and calculi, fuzzy logic, Bayesian inference, reasoning with maximal entropy and many less formal ad hoc techniques.
Automated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems. It is the combination of automation and ML. [1] AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment.
Also, data structures and algorithms for general fast search. In this area, there is a strong overlap with research in data structures and algorithms in computer science. In early systems, the Lisp programming language, which was modeled after the lambda calculus, was often used as a form of functional knowledge representation. Frames and Rules ...
Algorithmic information theory principally studies complexity measures on strings (or other data structures).Because most mathematical objects can be described in terms of strings, or as the limit of a sequence of strings, it can be used to study a wide variety of mathematical objects, including integers.
Because the list of goals determines which rules are selected and used, this method is called goal-driven, in contrast to data-driven forward-chaining inference. The backward chaining approach is often employed by expert systems. Programming languages such as Prolog, Knowledge Machine and ECLiPSe support backward chaining within their inference ...