Search results
Results from the WOW.Com Content Network
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
Log-likelihood; List of logarithmic identities; Logarithm of a matrix; Logarithm table; Logarithmic addition; Logarithmic convolution; Logarithmic decrement; Logarithmic differentiation; Logarithmic distribution; Logarithmic growth; Logarithmic number system; Logarithmic Sobolev inequalities; Logarithmus; Logarithmus binaris; Logarithmus ...
Download as PDF; Printable version; ... Decrement may refer to: Decrement table; Logarithmic decrement; Increment and decrement operators; See also
Mantissa is a disambiguation page; see common logarithm for the traditional concept of mantissa; see significand for the modern concept used in computing. Matrix logarithm Mel scale
Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a. In number theory , the more commonly used term is index : we can write x = ind r a (mod m ) (read "the index of a to the base r modulo m ") for r x ≡ a (mod m ) if r is a primitive root of m and gcd ...
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.