enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermistor - Wikipedia

    en.wikipedia.org/wiki/Thermistor

    The current and voltage across the thermistor depend on the particular circuit configuration. As a simple example, if the voltage across the thermistor is held fixed, then by Ohm's law we have = /, and the equilibrium equation can be solved for the ambient temperature as a function of the measured resistance of the thermistor:

  3. Steinhart–Hart equation - Wikipedia

    en.wikipedia.org/wiki/Steinhart–Hart_equation

    The Steinhart–Hart equation is a model relating the varying electrical resistance of a semiconductor to its varying temperatures.The equation is = + ⁡ + (⁡), where is the temperature (in kelvins),

  4. Self-regulating heater - Wikipedia

    en.wikipedia.org/wiki/Self-regulating_heater

    For example, a PTC heating element with a sharp change in resistance at a particular temperature can be fitted with a constant voltage source and a variable-speed fan. With the fan at a low setting, the heating element draws only a small amount of current, resulting in a low heat output.

  5. Inrush current limiter - Wikipedia

    en.wikipedia.org/wiki/Inrush_current_limiter

    An NTC thermistor's resistance is low at high temperatures. When the circuit is closed, the thermistor's resistance limits the initial current. After some time, current flow heats the thermistor, and its resistance changes to a lower value, allowing current to flow uninterrupted. It is inherently impossible for 100% of supply voltage to appear ...

  6. True RMS converter - Wikipedia

    en.wikipedia.org/wiki/True_RMS_converter

    For example, if 120 V AC RMS is applied to a resistive heating element it would heat up by exactly the same amount as if 120 V DC were applied. This principle was exploited in early thermal converters. The AC signal would be applied to a small heating element that was matched with a thermistor, which could be used in a DC measuring circuit.

  7. Symbolic circuit analysis - Wikipedia

    en.wikipedia.org/wiki/Symbolic_Circuit_Analysis

    Such relationship may take the form of a graph, where numerical values of a circuit variable are plotted versus frequency or component value (the most common example would be a plot of the magnitude of a transfer function vs. frequency). Symbolic circuit analysis is concerned with obtaining those relationships in symbolic form, i.e., in the ...

  8. Johnson–Nyquist noise - Wikipedia

    en.wikipedia.org/wiki/Johnson–Nyquist_noise

    Figure 4. These circuits are equivalent: (A) A resistor at nonzero temperature with internal thermal noise; (B) Its Thévenin equivalent circuit: a noiseless resistor in series with a noise voltage source; (C) Its Norton equivalent circuit: a noiseless resistance in parallel with a noise current source.

  9. Thermal cutoff - Wikipedia

    en.wikipedia.org/wiki/Thermal_cutoff

    Another type of thermal switch is a PTC (Positive Temperature Coefficient) thermistor; these thermistors have a "cutting off" temperature at which the resistance suddenly rises rapidly, limiting the current through the circuit. When used in conjunction with a thermistor relay, the PTC will switch off an electrical system at a desired temperature.