Search results
Results from the WOW.Com Content Network
The values of a stationary distribution ... It is always true that ... The state of any single enzyme follows a Markov chain, ...
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.
A Tolerant Markov model (TMM) is a probabilistic-algorithmic Markov chain model. [6] It assigns the probabilities according to a conditioning context that considers the last symbol, from the sequence to occur, as the most probable instead of the true occurring symbol. A TMM can model three different natures: substitutions, additions or deletions.
Intuitively, a stochastic matrix represents a Markov chain; the application of the stochastic matrix to a probability distribution redistributes the probability mass of the original distribution while preserving its total mass. If this process is applied repeatedly, the distribution converges to a stationary distribution for the Markov chain.
For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and π i q i j = π j q j i {\displaystyle \pi _{i}q_{ij}=\pi _{j}q_{ji}} holds, then by summing over j {\displaystyle j} , the global balance equations are satisfied and π {\displaystyle \pi } is the stationary ...
The Markov chain central limit theorem can be guaranteed for functionals of general state space Markov chains under certain conditions. In particular, this can be done with a focus on Monte Carlo settings. An example of the application in a MCMC (Markov Chain Monte Carlo) setting is the following: Consider a simple hard spheres model on a grid.
A Markov chain is a stochastic process defined by a set of states and, for each state, a probability distribution on the states. Starting from an initial state, it follows a sequence of states where each state in the sequence is chosen randomly from the distribution associated with the previous state.
We say is Markov with initial distribution and rate matrix to mean: the trajectories of are almost surely right continuous, let be a modification of to have (everywhere) right-continuous trajectories, (()) = + almost surely (note to experts: this condition says is non-explosive), the state sequence (()) is a discrete-time Markov chain with ...