enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Improper integral - Wikipedia

    en.wikipedia.org/wiki/Improper_integral

    An improper integral converges if the limit defining it exists. Thus for example one says that the improper integral exists and is equal to L if the integrals under the limit exist for all sufficiently large t, and the value of the limit is equal to L.

  3. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    An analogous statement for convergence of improper integrals is proven using integration by parts. If the integral of a function f is uniformly bounded over all intervals , and g is a non-negative monotonically decreasing function , then the integral of fg is a convergent improper integral.

  4. Direct comparison test - Wikipedia

    en.wikipedia.org/wiki/Direct_comparison_test

    In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.

  5. Cauchy principal value - Wikipedia

    en.wikipedia.org/wiki/Cauchy_principal_value

    The result of the procedure for principal value is the same as the ordinary integral; since it no longer matches the definition, it is technically not a "principal value". The Cauchy principal value can also be defined in terms of contour integrals of a complex-valued function f ( z ) : z = x + i y , {\displaystyle f(z):z=x+i\,y\;,} with x , y ...

  6. Limits of integration - Wikipedia

    en.wikipedia.org/wiki/Limits_of_integration

    Limits of integration can also be defined for improper integrals, with the limits of integration of both + and again being a and b. For an improper integral ∫ a ∞ f ( x ) d x {\displaystyle \int _{a}^{\infty }f(x)\,dx} or ∫ − ∞ b f ( x ) d x {\displaystyle \int _{-\infty }^{b}f(x)\,dx} the limits of integration are a and ∞, or − ...

  7. Dirichlet integral - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_integral

    In this case, the improper definite integral can be determined in several ways: the Laplace transform, double integration, differentiating under the integral sign, contour integration, and the Dirichlet kernel. But since the integrand is an even function, the domain of integration can be extended to the negative real number line as well.

  8. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    An integral representation of a function is an expression of the function involving a contour integral. Various integral representations are known for many special functions. Integral representations can be important for theoretical reasons, e.g. giving analytic continuation or functional equations, or sometimes for numerical evaluations.

  9. List of definite integrals - Wikipedia

    en.wikipedia.org/wiki/List_of_definite_integrals

    The fundamental theorem of calculus establishes the relationship between indefinite and definite integrals and introduces a technique for evaluating definite integrals. If the interval is infinite the definite integral is called an improper integral and defined by using appropriate limiting procedures. for example: