Search results
Results from the WOW.Com Content Network
The key advances of this technique are the ultrahigh scanning rate, which can be as high as 10 6 K/s, and the ultrahigh sensitivity, with a heat capacity resolution typically better than 1 nJ/K. [12] Nanocalorimetry [ 13 ] has attracted much attention in materials science, where it is applied to perform quantitative analysis of rapid phase ...
The molecules are delivered into communications media such as air and water for transmission. The technique also is not subject to the requirement of using antennas that are sized to a specific ratio of the wavelength of the signal. Molecular communication signals can be made biocompatible and require very little energy. [2] [3]
The suitable relationship that defines non-equilibrium thermodynamic state variables is as follows. When the system is in local equilibrium, non-equilibrium state variables are such that they can be measured locally with sufficient accuracy by the same techniques as are used to measure thermodynamic state variables, or by corresponding time and space derivatives, including fluxes of matter and ...
The Shannon limit or Shannon capacity of a communication channel refers to the maximum rate of error-free data that can theoretically be transferred over the channel if the link is subject to random data transmission errors, for a particular noise level.
To determine the channel capacity, it is necessary to find the capacity-achieving distribution () and evaluate the mutual information (;). Research has mostly focused on studying additive noise channels under certain power constraints and noise distributions, as analytical methods are not feasible in the majority of other scenarios.
Molar heat capacity of most elements at 25 °C is in the range between 2.8 R and 3.4 R: Plot as a function of atomic number with a y range from 22.5 to 30 J/mol K.. The Dulong–Petit law, a thermodynamic law proposed by French physicists Pierre Louis Dulong and Alexis Thérèse Petit, states that the classical expression for the molar specific heat capacity of certain chemical elements is ...
Non-ideal hydraulic behavior is commonly classified by either dead space or short-circuiting. These phenomena occur when some fluid spends less time in the reactor than the theoretical residence time, . The presence of corners or baffles in a reactor often results in some dead space where the fluid is poorly mixed. [6]
A hot fluid's heat capacity rate can be much greater than, equal to, or much less than the heat capacity rate of the same fluid when cold. In practice, it is most important in specifying heat-exchanger systems, wherein one fluid usually of dissimilar nature is used to cool another fluid such as the hot gases or steam cooled in a power plant by a heat sink from a water source—a case of ...