enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    In statistics, polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modeled as an nth degree polynomial in x. Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y, denoted E(y |x).

  3. Non-linear least squares - Wikipedia

    en.wikipedia.org/wiki/Non-linear_least_squares

    Consider a set of data points, (,), (,), …, (,), and a curve (model function) ^ = (,), that in addition to the variable also depends on parameters, = (,, …,), with . It is desired to find the vector of parameters such that the curve fits best the given data in the least squares sense, that is, the sum of squares = = is minimized, where the residuals (in-sample prediction errors) r i are ...

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    Simple linear regression and multiple regression using least squares can be done in some spreadsheet applications and on some calculators. While many statistical software packages can perform various types of nonparametric and robust regression, these methods are less standardized.

  5. Outline of regression analysis - Wikipedia

    en.wikipedia.org/wiki/Outline_of_regression_analysis

    Regression analysis – use of statistical techniques for learning about the relationship between one or more dependent variables (Y) and one or more independent variables (X). Overview articles [ edit ]

  6. Group method of data handling - Wikipedia

    en.wikipedia.org/wiki/Group_method_of_data_handling

    Like linear regression, which fits a linear equation over data, GMDH fits arbitrarily high orders of polynomial equations over data. [6] [7]To choose between models, two or more subsets of a data sample are used, similar to the train-validation-test split.

  7. Total least squares - Wikipedia

    en.wikipedia.org/wiki/Total_least_squares

    It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models. The total least squares approximation of the data is generically equivalent to the best, in the Frobenius norm , low-rank approximation of the data matrix.

  8. Nonlinear regression - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_regression

    In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).

  9. Weighted least squares - Wikipedia

    en.wikipedia.org/wiki/Weighted_least_squares

    Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.