Search results
Results from the WOW.Com Content Network
In genetics, an enhancer is a short (50–1500 bp) region of DNA that can be bound by proteins to increase the likelihood that transcription of a particular gene will occur. [1] [2] These proteins are usually referred to as transcription factors. Enhancers are cis-acting. They can be located up to 1 Mbp (1,000,000 bp) away from the gene ...
An enhancer localized in a DNA region distant from the promoter of a gene can have a very large effect on gene transcription, with some genes undergoing up to 100-fold increased transcription due to an activated enhancer. [10] Enhancers are regions of the genome that are major gene-regulatory elements.
Transcription factors can be divided in two main categories: activators and repressors. While activators can interact directly or indirectly with the core machinery of transcription through enhancer binding, repressors predominantly recruit co-repressor complexes leading to transcriptional repression by chromatin condensation of enhancer regions.
Several cell function specific transcription factors (there are about 1,600 transcription factors in a human cell [32]) generally bind to specific motifs on an enhancer [33] and a small combination of these enhancer-bound transcription factors, when brought close to a promoter by a DNA loop, govern the level of transcription of the target gene.
A transcriptional activator is a protein (transcription factor) that increases transcription of a gene or set of genes. [1] Activators are considered to have positive control over gene expression, as they function to promote gene transcription and, in some cases, are required for the transcription of genes to occur.
The link between E-box-regulated genes and the circadian clock was discovered in 1997, when Hao, Allen, and Hardin (Department of Biology at Texas A&M University) analyzed rhythmicity in the period gene in Drosophila melanogaster. [16] They found a circadian transcriptional enhancer upstream of the per gene within a 69 bp DNA fragment.
The activator contains a DNA binding domain that binds either to a DNA promoter site or a specific DNA regulatory sequence called an enhancer. [2] [3] Binding of the activator-coactivator complex increases the speed of transcription by recruiting general transcription machinery to the promoter, therefore increasing gene expression.
Enhancers are bound by transcription activator proteins and transcriptional regulation is typically controlled by more than one activator. Enhanceosomes are formed in special cases when these activators cooperatively bind together along the enhancer sequence to create a distinct three-dimensional structure.