Search results
Results from the WOW.Com Content Network
Doppler broadening of 238 U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control. Around 99.284% of natural uranium's mass is uranium-238, which has a half-life of 1.41 × 10 17 seconds (4.468 × 10 9 years, or 4.468 billion years). [1]
The method relies on two separate decay chains, the uranium series from 238 U to 206 Pb, with a half-life of 4.47 billion years and the actinium series from 235 U to 207 Pb, with a half-life of 710 million years.
234 U occurs in natural uranium as an indirect decay product of uranium-238, but makes up only 55 parts per million of the uranium because its half-life of 245,500 years is only about 1/18,000 that of 238 U. The path of production of 234 U is this: 238 U alpha decays to thorium-234. Next, with a short half-life, 234 Th beta decays to ...
One of its great advantages is that any sample provides two clocks, one based on uranium-235's decay to lead-207 with a half-life of about 700 million years, and one based on uranium-238's decay to lead-206 with a half-life of about 4.5 billion years, providing a built-in crosscheck that allows accurate determination of the age of the sample ...
Uranium-234 is a member of the uranium series and occurs in equilibrium with its progenitor, 238 U; it undergoes alpha decay with a half-life of 245,500 years [7] and decays to lead-206 through a series of relatively short-lived isotopes. Uranium-233 undergoes alpha decay with a half-life of 160,000 years and, like 235 U, is fissile. [12]
238 U, with a half-life of about 4.5 billion years, decays to 234 U through emission of an alpha particle to thorium-234 (234 Th), which is comparatively unstable with a half-life of just 24 days. 234 Th then decays through beta particle emission to protactinium-234 (234 Pa).
It is only weakly radioactive because of the long radioactive half-life of 238 U (4.468 × 10 9 or 4,468,000,000 years) and the low amounts of 234 U (half-life about 246,000 years) and 235 U (half-life 700 million years). The biological half-life (the average time it takes for the human body to eliminate half the amount in the body) for uranium ...
The U–Pb dating method can yield the most precise ages for early Solar System objects due to the optimal half-life of 238 U. However, the absence of zircon or other uranium-rich minerals in chondrites, and the presence of initial non-radiogenic Pb (common Pb), rules out direct use of the U–Pb concordia method. Therefore, the most precise ...