Search results
Results from the WOW.Com Content Network
Throughput is usually measured in bits per second (bit/s, sometimes abbreviated bps), and sometimes in packets per second (p/s or pps) or data packets per time slot. The system throughput or aggregate throughput is the sum of the data rates that are delivered over all channels in a network. [1]
People are often concerned about measuring the maximum data throughput in bits per second of a communications link or network access. A typical method of performing a measurement is to transfer a 'large' file from one system to another system and measure the time required to complete the transfer or copy of the file.
Throughput is controlled by available bandwidth, as well as the available signal-to-noise ratio and hardware limitations. Throughput for the purpose of this article will be understood to be measured from the arrival of the first bit of data at the receiver, to decouple the concept of throughput from the concept of latency.
The packet transmission time in seconds can be obtained from the packet size in bit and the bit rate in bit/s as: Packet transmission time = Packet size / Bit rate. Example: Assuming 100 Mbit/s Ethernet, and the maximum packet size of 1526 bytes, results in Maximum packet transmission time = 1526×8 bit / (100 × 10 6 bit/s) ≈ 122 μs
Packet loss indirectly reduces throughput as some transport layer protocols interpret loss as an indication of congestion and adjust their transmission rate to avoid congestive collapse. When reliable delivery is necessary, packet loss increases latency due to additional time needed for retransmission.
Maximum throughput scheduling is a procedure for scheduling data packets in a packet-switched best-effort network, typically a wireless network, in view to maximize the total throughput of the network, or the system spectral efficiency in a wireless network. This is achieved by giving scheduling priority to the least "expensive" data flows in ...
ALOHAnet, also known as the ALOHA System, [1] [2] [3] or simply ALOHA, was a pioneering computer networking system developed at the University of Hawaii. ALOHAnet became operational in June 1971, providing the first public demonstration of a wireless packet data network .
iperf, Iperf, or iPerf, is a tool for network performance measurement and tuning. It is a cross-platform tool that can produce standardized performance measurements for any network. iperf has client and server functionality, and can create data streams to measure the throughput between the two ends in one or both directions. [2]