Search results
Results from the WOW.Com Content Network
If a point P is exterior to a circle with center O, and if the tangent lines from P touch the circle at points T and S, then ∠TPS and ∠TOS are supplementary (sum to 180°). If a chord TM is drawn from the tangency point T of exterior point P and ∠ PTM ≤ 90° then ∠ PTM = ½ ∠ TOM .
The product-to-sum identities [28] or prosthaphaeresis formulae can be proven by expanding their right-hand sides using the angle addition theorems. Historically, the first four of these were known as Werner's formulas, after Johannes Werner who used them for astronomical calculations. [29]
The sum and difference formulas allow expanding the sine, the cosine, and the tangent of a sum or a difference of two angles in terms of sines and cosines and tangents of the angles themselves. These can be derived geometrically, using arguments that date to Ptolemy. One can also produce them algebraically using Euler's formula. Sum
When they are tangent, they form a quadruple of tangent circles with the -axis and with the circle for their mediant (+) / (+). [ 35 ] The Ford circles belong to a special Apollonian gasket with root quadruple ( 0 , 0 , 1 , 1 ) {\displaystyle (0,0,1,1)} , bounded between two parallel lines, which may be taken as the x {\displaystyle x} -axis ...
Illustration of the sum formula. Draw a horizontal line (the x -axis); mark an origin O. Draw a line from O at an angle α {\displaystyle \alpha } above the horizontal line and a second line at an angle β {\displaystyle \beta } above that; the angle between the second line and the x -axis is α + β {\displaystyle \alpha +\beta } .
The sum of the squared lengths of any two chords ... If AD is tangent to the circle at A and if AQ is a ... The formula for the unit circle in taxicab ...
In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency : internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the ...
The property of tangency is defined as follows. First, a point, line or circle is assumed to be tangent to itself; hence, if a given circle is already tangent to the other two given objects, it is counted as a solution to Apollonius' problem. Two distinct geometrical objects are said to intersect if they have a point in common. By definition, a ...