enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Refraction (sound) - Wikipedia

    en.wikipedia.org/wiki/Refraction_(sound)

    Refraction, in acoustics, comparable to the refraction of electromagnetic radiation, is the bending of sound propagation trajectories (rays) in inhomogeneous elastic media (gases, liquids, and solids) in which the wave velocity is a function of spatial coordinates. Bending of acoustic rays in layered inhomogeneous media occurs towards a layer ...

  3. Refraction - Wikipedia

    en.wikipedia.org/wiki/Refraction

    In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. [1] Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave ...

  4. Geometrical acoustics - Wikipedia

    en.wikipedia.org/wiki/Geometrical_acoustics

    The same laws of reflection and refraction hold for sound rays as for light rays. Geometrical acoustics does not take into account such important wave effects as diffraction . However, it provides a very good approximation when the wavelength is very small compared to the characteristic dimensions of inhomogeneous inclusions through which the ...

  5. Acoustics - Wikipedia

    en.wikipedia.org/wiki/Acoustics

    This falls within the domain of physical acoustics. In fluids, sound propagates primarily as a pressure wave. In solids, mechanical waves can take many forms including longitudinal waves, transverse waves and surface waves. Acoustics looks first at the pressure levels and frequencies in the sound wave and how the wave interacts with the ...

  6. Ripple tank - Wikipedia

    en.wikipedia.org/wiki/Ripple_tank

    In the diagram above, the waves can be seen to bend towards the normal. The normal is shown as a dotted line. The dashed line is the direction that the waves would travel if they had not met the angled piece of glass. In practice, showing refraction with a ripple tank is quite tricky to do.

  7. Sound speed gradient - Wikipedia

    en.wikipedia.org/wiki/Sound_speed_gradient

    A sound speed gradient leads to refraction of sound wavefronts in the direction of lower sound speed, causing the sound rays to follow a curved path. The radius of curvature of the sound path is inversely proportional to the gradient. [2] When the sun warms the Earth's surface, there is a negative temperature gradient in atmosphere.

  8. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    Since temperature and sound velocity normally decrease with increasing altitude, sound is refracted upward, away from listeners on the ground, creating an acoustic shadow at some distance from the source. [9] Wind shear of 4 m/(s · km) can produce refraction equal to a typical temperature lapse rate of 7.5 °C/km. [12]

  9. Huygens–Fresnel principle - Wikipedia

    en.wikipedia.org/wiki/Huygens–Fresnel_principle

    Wave refraction in the manner of Huygens Wave diffraction in the manner of Huygens and Fresnel. The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere. [1]