Search results
Results from the WOW.Com Content Network
It is agreed that the main mechanisms are based on desorption induced regeneration as electrochemical effects are confined to the surface of the porous carbons so cannot be responsible for bulk regeneration. [3] [6] The performance of different regeneration methods can be directly compared using the regeneration efficiency. This is defined as:
Electrodeionization (EDI) is a water treatment technology that utilizes DC power, ion exchange membranes, and ion exchange resin to deionize water. EDI is typically employed as a polishing treatment following reverse osmosis (RO), and is used in the production of ultrapure water. It differs from other RO polishing methods, like chemically ...
Continuous adsorption-electrochemical regeneration encompasses the adsorption and regeneration steps, typically separated in the bulk of industrial processes due to long adsorption equilibrium times (ranging from hours to months), into one continuous system. This is possible using a non-porous, electrically conducting carbon derivative called Nyex.
Parasites associated with the disease can reprogramme cells to increase the size of a liver in armadillos, researchers found. Leprosy has potential to regenerate livers, study finds Skip to main ...
Sunflower sea star regenerates its arms. Dwarf yellow-headed gecko with regenerating tail. Regeneration in biology is the process of renewal, restoration, and tissue growth that makes genomes, cells, organisms, and ecosystems resilient to natural fluctuations or events that cause disturbance or damage. [1]
The surviving epithelial cells, however, undergo migration, dedifferentiation, proliferation, and redifferentiation to replenish the epithelial lining of the proximal tubule after injury. Recently, the presence and participation of kidney stem cells in the tubular regeneration has been shown.
Regenerative medicine also includes the possibility of growing tissues and organs in the laboratory and implanting them when the body cannot heal itself. When the cell source for a regenerated organ is derived from the patient's own tissue or cells, [3] the challenge of organ transplant rejection via immunological mismatch is circumvented.
Unlike the limited regeneration seen in adult humans, many animal groups possess an ability to completely regenerate damaged tissue. [4] Full limb regeneration is seen both in invertebrates (e.g. starfish and flatworms which can regenerate fully functioning appendages) and some vertebrates, however in the latter this is almost always confined to the immature members of the species: an example ...