Search results
Results from the WOW.Com Content Network
Substituting into the Clapeyron equation =, we can obtain the Clausius–Clapeyron equation [8]: 509 = for low temperatures and pressures, [8]: 509 where is the specific latent heat of the substance. Instead of the specific, corresponding molar values (i.e. L {\\displaystyle L} in kJ/mol and R = 8.31 J/(mol⋅K)) may also be used.
The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine (1825–1897). [1]
There are a number of methods for calculating the sublimation pressure (i.e., the vapor pressure) of a solid. One method is to estimate the sublimation pressure from extrapolated liquid vapor pressures (of the supercooled liquid), if the heat of fusion is known, by using this particular form of the Clausius–Clapeyron relation: [9]
The coefficients given here correspond to equation 21 in Alduchov and Eskridge (1996). [2] See also discussion of Clausius-Clapeyron approximations used in meteorology and climatology. Tetens equation = (+) T is in °C and P is in kPa The Buck equation.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The value of the slope dP/dT is given by the Clausius–Clapeyron equation for fusion (melting) [11] =, where ΔH fus is the heat of fusion which is always positive, and ΔV fus is the volume change for fusion.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
Thus the P° pure vapor pressures for each component are a function of temperature (T): For example, commonly for a pure liquid component, the Clausius–Clapeyron relation may be used to approximate how the vapor pressure varies as a function of temperature. This makes each of the partial pressures dependent on temperature also regardless of ...