enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    If a power series with radius of convergence r is given, one can consider analytic continuations of the series, that is, analytic functions f which are defined on larger sets than { x | | x − c | < r} and agree with the given power series on this set. The number r is maximal in the following sense: there always exists a complex number x with ...

  3. Probability-generating function - Wikipedia

    en.wikipedia.org/wiki/Probability-generating...

    Probability generating functions are often employed for their succinct description of the sequence of probabilities Pr(X = i) in the probability mass function for a random variable X, and to make available the well-developed theory of power series with non-negative coefficients.

  4. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    Alternatively, the equality can be justified by multiplying the power series on the left by 1 − x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no other power series with this property.

  5. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    [2] We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the conjugate transpose of X. If Y is invertible then e YXY −1 = Ye X Y −1. The next key result is this one:

  6. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Taylor series is a power series based on a function's derivatives at a single point. [3] More specifically, if a function f : U → R {\displaystyle f:U\to \mathbb {R} } is infinitely differentiable around a point x 0 {\displaystyle x_{0}} , then the Taylor series of f around this point is given by

  7. Bell series - Wikipedia

    en.wikipedia.org/wiki/Bell_series

    In mathematics, the Bell series is a formal power series used to study properties of arithmetical functions. Bell series were introduced and developed by Eric Temple Bell . Given an arithmetic function f {\displaystyle f} and a prime p {\displaystyle p} , define the formal power series f p ( x ) {\displaystyle f_{p}(x)} , called the Bell series ...

  8. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    The power series method will give solutions only to initial value problems (opposed to boundary value problems), this is not an issue when dealing with linear equations since the solution may turn up multiple linearly independent solutions which may be combined (by superposition) to solve boundary value problems as well. A further restriction ...

  9. Formal power series - Wikipedia

    en.wikipedia.org/wiki/Formal_power_series

    A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).