Search results
Results from the WOW.Com Content Network
Computer graphics lighting is the collection of techniques used to simulate light in computer graphics scenes. While lighting techniques offer flexibility in the level of detail and functionality available, they also operate at different levels of computational demand and complexity. Graphics artists can choose from a variety of light sources ...
They are usually flat, without information about the light's direction, whilst some game engines use multiple lightmaps to provide approximate directional information to combine with normal-maps. Lightmaps may also store separate precalculated components of lighting information for semi-dynamic lighting with shaders, such as ambient-occlusion ...
In computer graphics, per-pixel lighting refers to any technique for lighting an image or scene that calculates illumination for each pixel on a rendered image. This is in contrast to other popular methods of lighting such as vertex lighting, which calculates illumination at each vertex of a 3D model and then interpolates the resulting values over the model's faces to calculate the final per ...
It pioneered the concept of high-dynamic-range imaging, where light levels are (theoretically) open-ended values instead of a decimal proportion of a maximum (e.g. 0.0 to 1.0) or integer fraction of a maximum (0 to 255 / 255). It also implements global illumination using the Monte Carlo method to sample light falling on a point.
In many implementations, it is practical to render only a subset of the objects in the scene to the shadow map to save some of the time it takes to redraw the map. Also, a depth offset which shifts the objects away from the light may be applied to the shadow map rendering in an attempt to resolve stitching problems where the depth map value is ...
Scene rendered with RRV [1] (simple implementation of radiosity renderer based on OpenGL) 79th iteration The Cornell box, rendered with and without radiosity by BMRT. In 3D computer graphics, radiosity is an application of the finite element method to solving the rendering equation for scenes with surfaces that reflect light diffusely.
Precomputed Radiance Transfer (PRT) is a computer graphics technique used to render a scene in real time with complex light interactions being precomputed to save time. Radiosity methods can be used to determine the diffuse lighting of the scene, however PRT offers a method to dynamically change the lighting environment. [1]
An environment texture mapped onto models of spoons, to give the illusion that they are reflecting the world around them. In computer graphics, reflection mapping or environment mapping [1] [2] [3] is an efficient image-based lighting technique for approximating the appearance of a reflective surface by means of a precomputed texture.