Search results
Results from the WOW.Com Content Network
This equation is called the Cauchy momentum equation and describes the non-relativistic momentum conservation of any continuum that conserves mass. σ is a rank two symmetric tensor given by its covariant components. In orthogonal coordinates in three dimensions it is represented as the 3 × 3 matrix:
In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.
All non-relativistic momentum conservation equations, such as the Navier–Stokes equation, can be derived by beginning with the Cauchy momentum equation and specifying the stress tensor through a constitutive relation.
The Dirac equation relativistic spectrum is, however, easily recovered if the orbital-momentum quantum number l is replaced by total angular-momentum quantum number j. [12] In January 1926, Schrödinger submitted for publication instead his equation, a non-relativistic approximation that predicts the Bohr energy levels of hydrogen without fine ...
The quantity mv of above is the ordinary non-relativistic momentum of the particle and m its rest mass. The four-momentum is useful in relativistic calculations because it is a Lorentz covariant vector. This means that it is easy to keep track of how it transforms under Lorentz transformations.
The momentum balance equations can be extended to more general materials, including solids. ... In the non-relativistic regime, its generalized momentum is
The relativistic energy–momentum equation holds for all particles, even for massless particles for which m 0 = 0. In this case: = When substituted into Ev = c 2 p, this gives v = c: massless particles (such as photons) always travel at the speed of light.
It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927. [1] In its linearized form it is known as Lévy-Leblond equation.