Search results
Results from the WOW.Com Content Network
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables is the radius, = is the circumference (the length of any one of its great circles), is the surface area,
A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...
The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.
In his work, Archimedes showed that the surface area of a cylinder is equal to: = + = (+). and that the volume of the same is: =. [3] On the sphere, he showed that the surface area is four times the area of its great circle. In modern terms, this means that the surface area is equal to:
A set of geometric shapes in 2 dimensions: parallelogram, triangle & circle A set of geometric shapes in 3 dimensions: pyramid, sphere & cube. A geometric shape consists of the geometric information which remains when location, scale, orientation and reflection are removed from the description of a geometric object. [1]
The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...
The sphere has the smallest surface area of all surfaces that enclose a given volume, and it encloses the largest volume among all closed surfaces with a given surface area. [11] The sphere therefore appears in nature: for example, bubbles and small water drops are roughly spherical because the surface tension locally minimizes surface area.
If the sides of the cube were multiplied by 2, its surface area would be multiplied by the square of 2 and become 24 m 2. Its volume would be multiplied by the cube of 2 and become 8 m 3. The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1.