Search results
Results from the WOW.Com Content Network
The North geomagnetic pole (Ellesmere Island, Nunavut, Canada) actually represents the South pole of Earth's magnetic field, and conversely the South geomagnetic pole corresponds to the north pole of Earth's magnetic field (because opposite magnetic poles attract and the north end of a magnet, like a compass needle, points toward Earth's South ...
Like the North Magnetic Pole, the North Geomagnetic Pole attracts the north pole of a bar magnet and so is in a physical sense actually a magnetic south pole. It is the center of the 'open' magnetic field lines which connect to the interplanetary magnetic field and provide a direct route for the solar wind to reach the ionosphere.
The equator is the circle of latitude that divides Earth into the Northern and Southern hemispheres. It is an imaginary line located at 0 degrees latitude , about 40,075 km (24,901 mi) in circumference, halfway between the North and South poles. [ 1 ]
Earth's magnetic field is produced in the outer liquid part of its core due to a dynamo that produce electrical currents there. The ions and electrons of a plasma interacting with the Earth's magnetic field generally follow its magnetic field lines. These represent the force that a north magnetic pole would experience at any given point.
The north magnetic pole, also known as the magnetic north pole, is a point on the surface of Earth's Northern Hemisphere at which the planet's magnetic field points vertically downward (in other words, if a magnetic compass needle is allowed to rotate in three dimensions, it will point straight down).
This image shows magnetic declination, or the angle between magnetic and geographic north, according to the World Magnetic Model released in 2025. Red is magnetic north to the east of geographic ...
Therefore, a compass needle will be parallel to the magnetic meridian. However, a compass needle will not be steady in the magnetic meridian, because of the longitude from east to west being complete geodesic. [12] The angle between the magnetic and the true meridian is the magnetic declination, which is relevant for navigating with a compass. [13]
Earth’s outer core is made up of mostly molten iron, a liquid metal. Unpredictable changes in the way it flows cause the magnetic field around the Earth to shift, which then causes the magnetic ...