Search results
Results from the WOW.Com Content Network
A Nyquist plot is a parametric plot of a frequency response used in automatic control and signal processing. The most common use of Nyquist plots is for assessing the stability of a system with feedback. In Cartesian coordinates, the real part of the transfer function is plotted on the X-axis while the imaginary part is plotted on the Y-axis ...
Nichols plot of the transfer function 1/s(1+s)(1+2s) along with the modified M and N circles. To use the Hall circles, a plot of M and N circles is done over the Nyquist plot of the open-loop transfer function. The points of the intersection between these graphics give the corresponding value of the closed-loop transfer function.
As the optical transfer function of these systems is real and non-negative, the optical transfer function is by definition equal to the modulation transfer function (MTF). Images of a point source and a spoke target with high spatial frequency are shown in (b,e) and (c,f), respectively.
Early uses of the term Nyquist frequency, such as those cited above, are all consistent with the definition presented in this article.Some later publications, including some respectable textbooks, call twice the signal bandwidth the Nyquist frequency; [6] [7] this is a distinctly minority usage, and the frequency at twice the signal bandwidth is otherwise commonly referred to as the Nyquist rate.
Plot of sample rates (y axis) versus the upper edge frequency (x axis) for a band of width 1; grays areas are combinations that are "allowed" in the sense that no two frequencies in the band alias to same frequency. The darker gray areas correspond to undersampling with the maximum value of n in the equations of this section.
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:
The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...
The Ziegler–Nichols tuning method is a heuristic method of tuning a PID controller.It was developed by John G. Ziegler and Nathaniel B. Nichols.It is performed by setting the I (integral) and D (derivative) gains to zero.