Search results
Results from the WOW.Com Content Network
In approximate arithmetic, such as floating-point arithmetic, the distributive property of multiplication (and division) over addition may fail because of the limitations of arithmetic precision. For example, the identity 1 / 3 + 1 / 3 + 1 / 3 = ( 1 + 1 + 1 ) / 3 {\displaystyle 1/3+1/3+1/3=(1+1+1)/3} fails in decimal arithmetic , regardless of ...
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law. The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra. The term appears in William Betz's 1929 text Algebra for Today, where he states: [2]
The following proposition says that for any set , the power set of , ordered by inclusion, is a bounded lattice, and hence together with the distributive and complement laws above, show that it is a Boolean algebra.
These equations induce equivalence classes on the free algebra; the quotient algebra then has the algebraic structure of a group. Some structures do not form varieties, because either: It is necessary that 0 ≠ 1, 0 being the additive identity element and 1 being a multiplicative identity element, but this is a nonidentity;
An element x is called a dual distributive element if ∀y,z: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). In a distributive lattice, every element is of course both distributive and dual distributive. In a non-distributive lattice, there may be elements that are distributive, but not dual distributive (and vice versa).
A non-associative algebra [1] (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative.That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative.
Since the center of a simple k-algebra is a field, any simple k-algebra is a central simple algebra over its center. In this section, a central simple algebra is assumed to have finite dimension. Also, we mostly fix the base field; thus, an algebra refers to a k-algebra. The matrix ring of size n over a ring R will be denoted by R n.