Search results
Results from the WOW.Com Content Network
The density of the Earth's atmosphere decreases nearly exponentially with altitude. The total mass of the atmosphere is M = ρ A H ≃ 1 kg/cm 2 within a column of one square centimeter above the ground (with ρ A = 1.29 kg/m 3 the atmospheric density on the ground at z = 0 m altitude, and H ≃ 8 km the average atmospheric scale height).
The thermopause is the atmospheric boundary of Earth's energy system, located at the top of the thermosphere. [1] The temperature of the thermopause could range from nearly absolute zero to 987.547 °C (1,810 °F).
The layers are to scale. From the Earth's surface to the top of the stratosphere (50km) is just under 1% of Earth's radius. The exosphere is a thin, atmosphere-like volume surrounding a planet or natural satellite where molecules are gravitationally bound to that body, but where the density is so low that the molecules are essentially collision ...
The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation.
The volume fraction of the main gases in Earth's atmosphere according to height. The heterosphere is above about 100 km in the graph. The heterosphere of Earth begins at about 100 km altitude and extends to the outer reaches of its atmosphere. [3] It incorporates most of the thermosphere and all of the exosphere. The major constituents of Earth ...
The three diagrams are constructed from the P–alpha diagram by using appropriate coordinate transformations. Not a thermodynamic diagram in a strict sense, since it does not display the energy–area equivalence, is the Stüve diagram; But due to its simpler construction it is preferred in education. [citation needed]
It incorporates all of the troposphere, stratosphere, mesosphere, and the lower part of the thermosphere. Chemically the homosphere is composed of 78% nitrogen, 21% oxygen, and trace amounts of other molecules, such as argon and carbon dioxide. [1] It contains over 99% of the mass of the Earth's atmosphere.
The five components of the climate system all interact. They are the atmosphere, the hydrosphere, the cryosphere, the lithosphere and the biosphere. [1]: 1451 Earth's climate system is a complex system with five interacting components: the atmosphere (air), the hydrosphere (water), the cryosphere (ice and permafrost), the lithosphere (earth's upper rocky layer) and the biosphere (living things).