Search results
Results from the WOW.Com Content Network
Buffer capacity falls to 33% of the maximum value at pH = pK a ± 1, to 10% at pH = pK a ± 1.5 and to 1% at pH = pK a ± 2. For this reason the most useful range is approximately pK a ± 1. When choosing a buffer for use at a specific pH, it should have a pK a value as close as possible to that pH. [2]
Soil particles can be classified by their chemical composition as well as their size. The particle size distribution of a soil, its texture, determines many of the properties of that soil, in particular hydraulic conductivity and water potential, [1] but the mineralogy of those particles can strongly modify those properties. The mineralogy of ...
A high mesh size (60 mesh = 0.25 mm; 100 mesh = 0.149 mm) indicates a finely ground lime that will react quickly with soil acidity. The buffering capacity of a soil depends on the clay content of the soil, the type of clay, and the amount of organic matter present, and may be related to the soil cation exchange capacity.
Soil mineral components belonging to a given textural class may thus share properties linked to their specific surface area (e.g. moisture retention) but not those linked to their chemical composition (e.g. cation exchange capacity). Soil components larger than 2.0 mm (0.079 in) are classed as rock and gravel and are removed before determining ...
The resistance of soil to change in pH, as a result of the addition of acid or basic material, is a measure of the buffering capacity of a soil and (for a particular soil type) increases as the CEC increases.
Acid-neutralizing capacity or ANC in short is a measure for the overall buffering capacity against acidification of a solution, e.g. surface water or soil water.. ANC is defined as the difference between cations of strong bases and anions of strong acids (see below), or dynamically as the amount of acid needed to change the pH value from the sample's value to a chosen different value. [1]
Cation-exchange capacity (CEC) is a measure of how many cations can be retained on soil particle surfaces. [1] Negative charges on the surfaces of soil particles bind positively-charged atoms or molecules (cations), but allow these to exchange with other positively charged particles in the surrounding soil water. [ 2 ]
Soil formation, also known as pedogenesis, is the process of soil genesis as regulated by the effects of place, environment, and history. Biogeochemical processes act to both create and destroy order ( anisotropy ) within soils.