Search results
Results from the WOW.Com Content Network
A great example of using skeletonization on an image is processing fingerprints. This can be quickly accomplished using bwmorph; a built-in Matlab function which will implement the Skeletonization Morphology technique to the image. The image to the right shows the extent of what skeleton morphology can accomplish.
Image with Gaussian noise Image with Gaussian noise removed. Wavelets are often used to denoise two dimensional signals, such as images. The following example provides three steps to remove unwanted white Gaussian noise from the noisy image shown. Matlab was used to import and filter the image.
Many of the techniques of digital image processing, or digital picture processing as it often was called, were developed in the 1960s, at Bell Laboratories, the Jet Propulsion Laboratory, Massachusetts Institute of Technology, University of Maryland, and a few other research facilities, with application to satellite imagery, wire-photo standards conversion, medical imaging, videophone ...
Its impulse response is defined by a sinusoidal wave (a plane wave for 2D Gabor filters) multiplied by a Gaussian function. [6] Because of the multiplication-convolution property (Convolution theorem), the Fourier transform of a Gabor filter's impulse response is the convolution of the Fourier transform of the harmonic function (sinusoidal function) and the Fourier transform of the Gaussian ...
The Hough transform [3] can be used to detect lines and the output is a parametric description of the lines in an image, for example ρ = r cos(θ) + c sin(θ). [1] If there is a line in a row and column based image space, it can be defined ρ, the distance from the origin to the line along a perpendicular to the line, and θ, the angle of the perpendicular projection from the origin to the ...
In mathematical morphology and digital image processing, a top-hat transform is an operation that extracts small elements and details from given images.There exist two types of top-hat transform: the white top-hat transform is defined as the difference between the input image and its opening by some structuring element, while the black top-hat transform is defined dually as the difference ...
Image registration or image alignment algorithms can be classified into intensity-based and feature-based. [3] One of the images is referred to as the moving or source and the others are referred to as the target, fixed or sensed images. Image registration involves spatially transforming the source/moving image(s) to align with the target image.
This flooding process is performed on the gradient image, i.e. the basins should emerge along the edges. Normally this will lead to an over-segmentation of the image, especially for noisy image material, e.g. medical CT data. Either the image must be pre-processed or the regions must be merged on the basis of a similarity criterion afterwards.