Search results
Results from the WOW.Com Content Network
Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping. It consists of four phases: initiation, elongation, termination, and recapping.
Genetics. In biology, translation is the process in living cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotides in the RNA. The nucleotides are considered three at a time.
Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text that appears unreliable or low-quality.
Step 2: Add the shrimp. When the oil is slightly shimmering, it’s hot enough to add the shrimp! Add the shrimp and cook for about two minutes, stirring often, until the shrimp just start to turn ...
Penaeidae is a family of marine crustaceans in the suborder Dendrobranchiata, which are often referred to as penaeid shrimp or penaeid prawns. The Penaeidae contain many species of economic importance, such as the tiger prawn, whiteleg shrimp, Atlantic white shrimp, and Indian prawn. Many prawns are the subject of commercial fishery, and ...
Amino acid activation is a prerequisite to the initiation of translation and protein synthesis. Peptide bond formation is an endergonic, thermodynamically unfavorable process, so amino acids must be activated by covalent linkage to tRNA molecules. The energy stored within the aminoacyl-tRNA bond is used to drive peptide bond formation.
We love a good kitchen hack. For premium support please call: 800-290-4726 more ways to reach us
Translational regulation refers to the control of the levels of protein synthesized from its mRNA. This regulation is vastly important to the cellular response to stressors, growth cues, and differentiation. In comparison to transcriptional regulation, it results in much more immediate cellular adjustment through direct regulation of protein ...