Search results
Results from the WOW.Com Content Network
Slip ratio is a means of calculating and expressing the slipping behavior of the wheel of an automobile.It is of fundamental importance in the field of vehicle dynamics, as it allows to understand the relationship between the deformation of the tire and the longitudinal forces (i.e. the forces responsible for forward acceleration and braking) acting upon it.
The Swedish Slip Circle method assumes that the friction angle of the soil or rock is equal to zero, i.e., = ′. In other words, when friction angle is considered to be zero, the effective stress term goes to zero, thus equating the shear strength to the cohesion parameter of the given soil.
The ratios between the slip angles of the front and rear axles (a function of the slip angles of the front and rear tires respectively) will determine the vehicle's behavior in a given turn. If the ratio of front to rear slip angles is greater than 1:1, the vehicle will tend to understeer, while a ratio of less than 1:1 will produce oversteer. [2]
The stability of a slope is essentially controlled by the ratio between the available shear strength and the acting shear stress, which can be expressed in terms of a safety factor if these quantities are integrated over a potential (or actual) sliding surface. A slope can be globally stable if the safety factor, computed along any potential ...
In (automotive) vehicle dynamics, slip is the relative motion between a tire and the road surface it is moving on. This slip can be generated either by the tire's rotational speed being greater or less than the free-rolling speed (usually described as percent slip), or by the tire's plane of rotation being at an angle to its direction of motion (referred to as slip angle).
There are a number of correlations for slip ratio. For homogeneous flow, S = 1 (i.e. there is no slip). The Chisholm correlation [2] [3] is: = The Chisholm correlation is based on application of the simple annular flow model and equates the frictional pressure drops in the liquid and the gas phase.
The term tractive effort is often qualified as starting tractive effort, continuous tractive effort and maximum tractive effort.These terms apply to different operating conditions, but are related by common mechanical factors: input torque to the driving wheels, the wheel diameter, coefficient of friction (μ) between the driving wheels and supporting surface, and the weight applied to the ...
In materials science, Schmid's law (also Schmid factor [a]) describes the slip plane and the slip direction of a stressed material, which can resolve the most shear stress. ...