enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. CW complex - Wikipedia

    en.wikipedia.org/wiki/CW_complex

    [11] [12] CW complexes satisfy the Whitehead theorem: a map between CW complexes is a homotopy equivalence if and only if it induces an isomorphism on all homotopy groups. A covering space of a CW complex is also a CW complex. [13] The product of two CW complexes can be made into a CW complex.

  3. Whitehead theorem - Wikipedia

    en.wikipedia.org/wiki/Whitehead_theorem

    For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...

  4. Universal coefficient theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_coefficient_theorem

    Here might be the simplicial homology, or more generally the singular homology. The usual proof of this result is a pure piece of homological algebra about chain complexes of free abelian groups . The form of the result is that other coefficients A may be used, at the cost of using a Tor functor .

  5. Cohomology - Wikipedia

    en.wikipedia.org/wiki/Cohomology

    The Z-cohomology of RP 2a has an element y of degree 2 such that the whole cohomology is the direct sum of a copy of Z spanned by the element 1 in degree 0 together with copies of Z/2 spanned by the elements y i for i=1,...,a. The Z-cohomology of RP 2a+1 is the same together with an extra copy of Z in degree 2a+1. [10]

  6. Alexander duality - Wikipedia

    en.wikipedia.org/wiki/Alexander_duality

    0, 1, 0, 0. This does work out, predicting the complement's reduced Betti numbers. The prototype here is the Jordan curve theorem, which topologically concerns the complement of a circle in the Riemann sphere. It also tells the same story. We have the honest Betti numbers 1, 1, 0. of the circle, and therefore 0, 1, 1. by flipping over and 1, 1, 0

  7. Group cohomology - Wikipedia

    en.wikipedia.org/wiki/Group_cohomology

    A general paradigm in group theory is that a group G should be studied via its group representations.A slight generalization of those representations are the G-modules: a G-module is an abelian group M together with a group action of G on M, with every element of G acting as an automorphism of M.

  8. Mayer–Vietoris sequence - Wikipedia

    en.wikipedia.org/wiki/Mayer–Vietoris_sequence

    Let X be a topological space and A, B be two subspaces whose interiors cover X. (The interiors of A and B need not be disjoint.) The Mayer–Vietoris sequence in singular homology for the triad (X, A, B) is a long exact sequence relating the singular homology groups (with coefficient group the integers Z) of the spaces X, A, B, and the intersection A∩B. [8]

  9. Spanier–Whitehead duality - Wikipedia

    en.wikipedia.org/wiki/Spanier–Whitehead_duality

    In mathematics, Spanier–Whitehead duality is a duality theory in homotopy theory, based on a geometrical idea that a topological space X may be considered as dual to its complement in the n-sphere, where n is large enough. Its origins lie in Alexander duality theory, in homology theory, concerning complements in manifolds.