enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

  3. Likelihood principle - Wikipedia

    en.wikipedia.org/wiki/Likelihood_principle

    Combining the likelihood principle with the law of likelihood yields the consequence that the parameter value which maximizes the likelihood function is the value which is most strongly supported by the evidence. This is the basis for the widely used method of maximum likelihood.

  4. Exploratory factor analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_factor_analysis

    The maximum likelihood method has many advantages in that it allows researchers to compute of a wide range of indexes of the goodness of fit of the model, it allows researchers to test the statistical significance of factor loadings, calculate correlations among factors and compute confidence intervals for these parameters. [6]

  5. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    As in the simple example above, finding the optimum β parameters will require numerical methods. One useful technique is to equate the derivatives of the log likelihood with respect to each of the β parameters to zero yielding a set of equations which will hold at the maximum of the log likelihood:

  6. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    For maximum likelihood estimation, the existence of a global maximum of the likelihood function is of the utmost importance. By the extreme value theorem , it suffices that the likelihood function is continuous on a compact parameter space for the maximum likelihood estimator to exist. [ 7 ]

  7. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression.The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

  8. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    The IIA hypothesis is a core hypothesis in rational choice theory; however numerous studies in psychology show that individuals often violate this assumption when making choices. An example of a problem case arises if choices include a car and a blue bus. Suppose the odds ratio between the two is 1 : 1.

  9. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    We can derive the value of the G-test from the log-likelihood ratio test where the underlying model is a multinomial model. Suppose we had a sample x = ( x 1 , … , x m ) {\textstyle x=(x_{1},\ldots ,x_{m})} where each x i {\textstyle x_{i}} is the number of times that an object of type i {\textstyle i} was observed.