enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    As for instance, if the body passes the periastron at coordinates = (), =, at time =, then to find out the position of the body at any time, you first calculate the mean anomaly from the time and the mean motion by the formula = (), then solve the Kepler equation above to get , then get the coordinates from:

  3. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  4. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    When the right-hand side of the equation is a positive real number, the solution corresponds to an epispiral. [22] When the argument θ 1 – θ 0 equals ±90°×k, the cosine goes to zero and the radius goes to infinity. Thus, when k is less than one, the range of allowed angles becomes small and the force is repulsive (red curve on right in ...

  5. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The formula for an escape velocity is derived as follows. The specific energy (energy per unit mass) of any space vehicle is composed of two components, the specific potential energy and the specific kinetic energy. The specific potential energy associated with a planet of mass M is given by

  6. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Mathematically, an ellipse can be represented by the formula: r = p 1 + ε cos ⁡ θ , {\displaystyle r={\frac {p}{1+\varepsilon \,\cos \theta }},} where p {\displaystyle p} is the semi-latus rectum , ε is the eccentricity of the ellipse, r is the distance from the Sun to the planet, and θ is the angle to the planet's current position from ...

  7. Equation of time - Wikipedia

    en.wikipedia.org/wiki/Equation_of_time

    Animation showing equation of time and analemma path over one year.. The United States Naval Observatory states "the Equation of Time is the difference apparent solar time minus mean solar time", i.e. if the sun is ahead of the clock the sign is positive, and if the clock is ahead of the sun the sign is negative.

  8. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    More recently, it has also become useful to calculate spacecraft trajectories. Henri Poincaré published two now classical monographs, "New Methods of Celestial Mechanics" (1892–1899) and "Lectures on Celestial Mechanics" (1905–1910). In them, he successfully applied the results of their research to the problem of the motion of three bodies ...

  9. Astronomical coordinate systems - Wikipedia

    en.wikipedia.org/wiki/Astronomical_coordinate...

    Angles in the hours ( h), minutes ( m), and seconds ( s) of time measure must be converted to decimal degrees or radians before calculations are performed. 1 h = 15°; 1 m = 15′; 1 s = 15″ Angles greater than 360° (2 π ) or less than 0° may need to be reduced to the range 0°−360° (0–2 π ) depending upon the particular calculating ...